WELCOME

In your persistence, competition has no existence.

INTERNET PROTOCOL (IP) ADDRESS


HOW IP ADDRESS WORKS
Every machine on a network has a unique identifier. Just as you would address a letter to send in the mail, computers use the unique identifier to send data to specific computers on a network. Most networks today, including all computers on the internet, use the TCP/IP protocol as the standard for how to communicate on the network. In the TCP/IP protocol, the unique identifier for a computer is called its IP address.



  
In Microsoft Windows, you can enter ipconfig in the command
 prompt app to view your computer's current IP address configuration.


Within an isolated network, you can assign IP addresses at random as long as each one is unique. However, connecting a private network to the Internet requires using registered IP addresses (called Internet addresses) to avoid duplicates.


There are two standards for IP addresses: IP Version 4 (IPv4) and IP Version 6 (IPv6). All computers with IP addresses have an IPv4 address, and many are starting to use the new IPv6 address system as well. Lets have a look at the differences.

  • IPv4 uses 32 binary bits to create a single unique address on the network. An IPv4 address is expressed by four numbers separated by dots. Each number is the decimal (base-10) representation for an eight-digit binary (base-2) number, also called an octet. For example: 216.27.61.137.
  • IPv6 uses 128 binary bits to create a single unique address on the network. An IPv6 address is expressed by eight groups of hexadecimal (base-16) numbers separated by colons, as in 2001:cdba:0000:0000:0000:0000:3257:9652. Groups of numbers that contain all zeros are often omitted to save space, leaving a colon separator to mark the gap (as in 2001:cdba::3257:9652).

At the dawn of IPv4 addressing, the Internet was not the large commercial sensation it is today, and most networks were private and closed off from other networks around the world. When the Internet exploded, having only 32 bits to identify a unique Internet address caused people to panic that we'd run out of IP addresses. Under IPv4, there are 232 possible combinations, which offers just under 4.3 billion unique addresses. IPv6 raised that to a panic-relieving 2128 possible addresses. Later, we'll take a closer look at how to understand your computer's IPv4 or IPv6 addresses.


How does your computer get its IP address? An IP address can be either dynamic or static. A static address is one that you configure yourself by editing your computer's network settings. This type of address is rare, and it can create network issues if you use it without a good understanding of TCP/IP. Dynamic addresses are the most common. They're assigned by the Dynamic Host Configuration Protocol (DHCP), a service running on the network. DHCP typically runs on network hardware such as routers or dedicated DHCP servers.



Dynamic IP addresses are issued using a leasing system, meaning that the IP address is only active for a limited time. If the lease expires, the computer will automatically request a new lease. Sometimes, this means the computer will get a new IP address, too, especially if the computer was unplugged from the network between leases. This process is usually transparent to the user unless the computer warns about an IP address conflict on the network (two computers with the same IP address). An address conflict is rare, and today's technology typically fixes the problem automatically.

 In the next lessons, we will look at the classes of IP address...